© Roman Eisele / Wikimedia Commons / CC BY-SA 4.0
.

On this page, you will find a collection of links to scientific publications that are relevant to this project or that can contribute to a deeper exemplary understanding of the processes and circumstances that may be related to the Reinterpretation of Germania Magna presented here. These publications span different research areas.

The collection includes:

  • Primary literature: Scientific publications presenting the results of new research.
  • Secondary literature: Scientific publications summarizing, analyzing, or interpreting primary literature.
  • Comparative literature: Publications that exemplify similar processes and circumstances in other contexts.
  • Additional resources: Links to websites, databases, and other resources that may be relevant to the reinterpretation

The following publications are intended to help answer specific questions exemplarily, which may be related to the necessary processes and events required for extensive landscape transformation. These include considerations of tectonic fracture events and rift systems, with corresponding effects on maritime landslide events and the formation of new sedimentation basins.


What caused terrestrial dust loading and climate downturns between A.D. 533 and 540?


What Caused Terrestrial Dust Loading and Climate Downturns Between 533 and 540 A.D.? Scanning electron microscope (SEM) micrographs of particles from the ice core. (A, C, E, J) Sn-rich particles with one Fe-rich spherule in E. (B, D, F, G, H) Qualitative energy-dispersive X-ray microanalyses of compositions. (Note that the peak heights are not absolute so no scale is given for peak heights. This means that the relative heights of nearby spectral peaks provide a good estimate of relative abundances of these elements. In contrast, the relative heights of peaks with different energies are only loosely correlated to their relative abundance.) Four out of fi ve analyses are of Sn-rich particles. Analysis D shows a small but distinct Cu peak in addition to Sn peaks. The remaining analysis is of a Fe-rich spherule (F). (I) Ni-rich particle-analysis in Table 3. Ratios of backscattered and secondary electrons were adjusted to maximum the image quality: (A) 100% BSE (backscattered electron mode); (C, I) 50% BSE, 50% ILSE (in-lens secondary electron mode); (E) 90% BSE, 10% ILSE, (J) 50% BSE, 50% SE2 (standard secondary electron mode). Black arrows or lines point from particles to their spectra.

DOI https://doi.org/10.1130/2014.2505(23) Abstract Sn-rich particles, Ni-rich particles, and cosmic spherules are found together at four discrete stratigraphic levels within the 362–360 m depth interval of the Greenland Ice Sheet Project 2 (GISP2) ice core (72.6°N, 38.5°W, elevation: 3203 m). Using a previously derived calendar-year time scale, these particles span a time of increased dust loading of Earth’s atmosphere between A.D. 533 and 540. The Sn-rich and Ni-rich particles contain an average of 10–11 wt% C. Their high C contents coupled with local enrichments in the volatile elements I, Zn, Cu, and Xe suggest a cometary source for the dust. The late spring timing of extraterrestrial input best matches the Eta Aquarid meteor shower associated with comet 1P/Halley. An increased flux of cometary dust might explain a modest climate downturn in A.D. 533. Both cometary dust and volcanic sulfate probably contributed to the profound global dimming during A.D. 536 and 537 … Read moreWhat caused terrestrial dust loading and climate downturns between A.D. 533 and 540?

Continental-scale temperature variability during the past two millennia


Summary of long-term trends in individual site-level proxy records.

DOI https://doi.org/10.1038/ngeo1797 Abstract Past global climate changes had strong regional expression. To elucidate their spatio-temporal pattern, we reconstructed past temperatures for seven continental-scale regions during the past one to two millennia. The most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century. At multi-decadal to centennial scales, temperature variability shows distinctly different regional patterns, with more similarity within each hemisphere than between them. There were no globally synchronous multi-decadal warm or cold intervals that define a worldwide Medieval Warm Period or Little Ice Age, but all reconstructions show generally cold conditions between AD 1580 and 1880, punctuated in some regions by warm decades during the eighteenth century. The transition to these colder conditions occurred earlier in the Arctic, Europe and Asia than in North America or the Southern Hemisphere regions. Recent warming reversed the long-term cooling; during the period AD 1971–2000, … Read moreContinental-scale temperature variability during the past two millennia

One Thousand Centuries of Climatic Record from Camp Century on the Greenland Ice Sheet


Average near surface temperatures of the northern hemisphere during the past 11000 years (Dansgaard et al., 1969; Schonwiese 1995).

DOI http://dx.doi.org/10.1126/science.166.3903.377 Abstract A correlation of time with depth has been evaluated for the Camp Century, Greenland, 1390 meter deep ice core. Oxygen isotopes in approximately 1600 samples throughout the core have been analyzed. Long-term variations in the isotopic composition of the ice reflect the climatic changes during the past nearly 100,000 years. Climatic oscillations with periods of 120, 940, and 13,000 years are observed. W. Dansgaard et al., One Thousand Centuries of Climatic Record from Camp Century on the Greenland Ice Sheet. Science166, 377-381 (1969). DOI: 10.1126/science.166.3903.377