© Roman Eisele / Wikimedia Commons / CC BY-SA 4.0
.

On this page, you will find a collection of links to scientific publications that are relevant to this project or that can contribute to a deeper exemplary understanding of the processes and circumstances that may be related to the Reinterpretation of Germania Magna presented here. These publications span different research areas.

The collection includes:

  • Primary literature: Scientific publications presenting the results of new research.
  • Secondary literature: Scientific publications summarizing, analyzing, or interpreting primary literature.
  • Comparative literature: Publications that exemplify similar processes and circumstances in other contexts.
  • Additional resources: Links to websites, databases, and other resources that may be relevant to the reinterpretation

The following publications are intended to help answer specific questions exemplarily, which may be related to the necessary processes and events required for extensive landscape transformation. These include considerations of tectonic fracture events and rift systems, with corresponding effects on maritime landslide events and the formation of new sedimentation basins.


A new tectonic model for the Laurentia-Avalonia-Baltica sutures in the North Sea: A case study along MONA LISA profile 3


Lyngsie, S.B. & Thybo, H.. (2007). A new tectonic model for the Laurentia−Avalonia−Baltica sutures in the North Sea: A case study along MONA LISA profile 3. Tectonophysics. 429. 201-227. 10.1016/j.tecto.2006.09.017.

DOI http://dx.doi.org/10.1016/j.tecto.2006.09.017 Abstract We present a new model for the lithospheric structure of the transitions between Laurentia, Avalonia and Baltica in the North Sea, northwestern Europe based on 2¾D potential field modelling of MONA LISA profile 3 across the Central Graben, with constraints from seismic P-wave velocity models and the crustal normal incidence reflection section along the profile. The model shows evidence for the presence of upper-and lower Palaeozoic sedimentary rocks as well as differences in crustal structure between the palaeo-continents Laurentia, Avalonia and Baltica. Our new model, together with previous results from transformations of the gravity and magnetic fields, demonstrates correlation between crustal magnetic domains along the profile and the terrane affinity of the crust. This integrated interpretation indicates that a 150 km wide zone, characterized by low-grade metamorphosis and oblique thrusting of Avalonia crust over Baltica lower crust, is characteristic for the central North Sea area. The magnetic … Read moreA new tectonic model for the Laurentia-Avalonia-Baltica sutures in the North Sea: A case study along MONA LISA profile 3

Seismic velocity structure of crustal intrusions in the Danish Basin


Simpli fi ed map of the main tectonic features in the Danish Basin and surrounding areas. Abbreviations: CDF = Caledonian Deformation Front; STZ = Sorgenfrei-Tornquist Zone; TF = Tornquist Fan (light grey); MNRFH = Mid North Sea-Ringkøbing-Fyn High; TESZ = Trans-European Suture Zone; DB = Danish Basin; CG = Central Graben; HG = Horn Graben; BG = Brande Graben; OG = Oslo Graben; SG = Skagerrak Graben. Inset shows location of study area in Europe. After Berthelsen (1992), MONA LISA Working Group (1997b) and Ziegler (1990).

DOI 10.1016/j.tecto.2011.11.019 We image the east- and westward extent of a crustal high-velocity body, the thickness of a layered sequence around the Moho at the flank of the body, and the uppermost mantle velocity along the 320 km long refraction and wide-angle reflection seismic profile ESTRID 2007 in the Danish Basin. Ray-tracing modelling of the seismic data reveals a high-velocity body (6.7-7.7 km/s between 10 and 30 km depth) with a lateral extent of at least 110 km. It is interpreted as an intrusive body of gabbroic composition. Moho depth is variable between 30 and 35 km along the profile. The crust is thin in a similar to 180 km wide zone approximately below the western part of the intrusive body and further westward in the basin area. The Pn velocity in the uppermost mantle is relatively low (similar to 7.8 km/s) beneath the thin crust whereas higher Pn velocities … Read moreSeismic velocity structure of crustal intrusions in the Danish Basin

Mechanism for the Uplift of Gongga Shan in the Southeastern Tibetan Plateau Constrained by 3D Magnetotelluric Data


Jiang, Feng & Chen, Xiaobin & Unsworth, Martyn & Cai, Juntao & Han, Bing & Wang, Lifeng & Dong, Zeyi & Tengfa, Cui & Zhan, Yan & Zhao, Guoze & Tang, Ji. (2022). Mechanism for the Uplift of Gongga Shan in the Southeastern Tibetan Plateau Constrained by 3D Magnetotelluric Data. Geophysical Research Letters. 49. 10.1029/2021GL097394.

DOI http://dx.doi.org/10.1029/2021GL097394 Abstract Plain Language Summary Continent‐continent collisions are an important tectonic process and have controlled the formation of the modern continents. The India‐Asia collision is the best modern example and has produced both a high elevation plateau and the world’s highest mountain belts. A range of tectonic processes occurs during these collisions as the crust deforms including extrusion and perhaps crustal flow. Within these collision zones, there are locations of especially rapid uplift that have not been explained with existing geodynamic models. This paper investigates this process through a study of Gongga Shan—a mountain on the eastern edge of the Tibetan Plateau, where uplift continues at a rate of 2–3 mm per year and has formed peaks greater than 7,500 m in elevation. 3D inversion of an array of magnetotelluric data has produced a well‐constrained crustal resistivity model for the GGS area. It reveals that the GGS crust is … Read moreMechanism for the Uplift of Gongga Shan in the Southeastern Tibetan Plateau Constrained by 3D Magnetotelluric Data

The Thor suture zone: From subduction to intraplate basin setting


Smit, Jeroen & Van Wees, J. & Cloetingh, Sierd. (2016). The Thor suture zone: From subduction to intraplate basin setting. Geology. 44. G37958.1. 10.1130/G37958.1.

DOI http://dx.doi.org/10.1130/G37958.1 Abstract The crustal seismic velocity structure of northwestern Europe shows a low P-wave velocity zone (LVZ) in the lower crust along the Caledonian Thor suture zone (TSZ) that cannot be easily attributed to Avalonia or Baltica plates abutting the TSZ. The LVZ appears to correspond to a hitherto unrecognized crustal segment (accretionary complex) that separates Avalonia from Baltica, explaining well the absence of Avalonia further east. Consequently, the northern boundary of Avalonia is shifted ∼150 km southward. Our interpretation, based on analysis of deep seismic profiles, places the LVZ in a consistent crustal domain interpretation. A comparison with present-day examples of the Kuril and Cascadia subduction zones suggests that the LVZ separating Avalonia from Baltica is composed of remnants of the Caledonian accretionary complex. If so, the present-day geometry probably originates from pre-Variscan extension and eduction during Devonian–Carboniferous backarc extension. The reinterpretation of deep crustal zonation provides a … Read moreThe Thor suture zone: From subduction to intraplate basin setting